Genetic association analysis using weighted false discovery rate approach on Genetic Analysis Workshop 18 data
نویسندگان
چکیده
In a genome-wide association study, association between disease trait and hundreds of thousands of genetic markers are tested. Several methods have been proposed to control the false discovery rate in such high-throughput data to adjust for multiple hypotheses testing. For Genetic Analysis Workshop 18, we applied the method of false discovery rate control with p value weighting on family-based association tests on quantitative trait to detect association between single-nucleotide polymorphisms (SNPs) and mean arterial pressure. This method can improve statistical power by incorporating independent but relevant information about the research objective. Using the real genetic and phenotype data of chromosome 3 from Genetic Analysis Workshop 18, 1 SNP from gene CACNA2D3 was found to have significant association with mean arterial pressure.
منابع مشابه
Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data
A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...
متن کاملA mixture model approach to multiple testing for the genetic analysis of gene expression
With the availability of very dense genome-wide maps of markers, multiple testing has become a major difficulty for genetic studies. In this context, the false-discovery rate (FDR) and related criteria are widely used. Here, we propose a finite mixture model to estimate the local FDR (lFDR), the FDR, and the false non-discovery rate (FNR) in variance-component linkage analysis. Our parametric a...
متن کاملThe multiplicity problem in linkage analysis of gene expression data – the power of differentiating cis- and trans-acting regulators
In this report, we focused on the multiplicity issue in Problem 1 of Genetic Analysis Workshop 15. We investigated and compared the performance of the stratified false-discovery rate control method with the traditional aggregated approach, in an application to genome-wide linkage analyses of single-nucleotide polymorphism-to-gene expression data. We showed the importance of utilizing the availa...
متن کاملComparison of false-discovery rate for genome-wide and fine mapping regions
With technological advances in high-throughput genotyping, it is not unusual to perform hundreds of thousands of tests for each phenotype. Thus, correction to control type I error is essential. The false-discovery rate (FDR) has been successfully used in genome-wide expression data. However, its performance has not been evaluated for association analysis. Our objective was to analyze the Geneti...
متن کاملWere genome-wide linkage studies a waste of time? Exploiting candidate regions within genome-wide association studies.
A central issue in genome-wide association (GWA) studies is assessing statistical significance while adjusting for multiple hypothesis testing. An equally important question is the statistical efficiency of the GWA design as compared to the traditional sequential approach in which genome-wide linkage analysis is followed by region-wise association mapping. Nevertheless, GWA is becoming more pop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014